广州

当前选择:广州

当前位置: 广州学大教育 > 广州资讯 > 广州

勾股定理逆定理练习题

来源:学大教育 时间:2014-05-05 19:58:48

在初中数学的学习中,我们大家会学习到在我们整个数学的学习中的一个很重要的定理,那就是勾股定理,作为我们初中要学习和掌握的一个重要定理,我们大家在学习这个定理的时候,不仅呀做到能够对这些定理熟练的应用,更要达到对这些逆定理的反向思维的应用,所以我们大家在学习勾股定理的时候,有必要接触一些关于勾股定理逆定理的练习题。

1.判断题

⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角.

⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半.”的逆命题是真命题.

⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形.

⑷△ABC的三边之比是1:1: ,则△ABC是直角三角形.

答案:对,错,错,对;

2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )

A.如果∠C-∠B=∠A,则△ABC是直角三角形.

B.如果c2=b2—a2,则△ABC是直角三角形,且∠C=90°.

C.如果(c+a)(c-a)=b2,则△ABC是直角三角形.

D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形.

答案:D

3.下列四条线段不能组成直角三角形的是( )

A.a=8,b=15,c=17  B.a=9,b=12,c=15  C.a= ,b= ,c=   D.a:b:c=2:3:4

答案:D

4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?

⑴a= ,b= ,c= ; ⑵a=5,b=7,c=9;

⑶a=2,b= ,c= ; ⑷a=5,b= ,c=1.

答案:⑴是,∠B;⑵不是;⑶是,∠C;⑷是,∠A.

5.叙述下列命题的逆命题,并判断逆命题是否正确.

⑴如果a3>0,那么a2>0;

⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;

⑶如果两个三角形全等,那么它们的对应角相等;

⑷关于某条直线对称的两条线段一定相等.

答案:⑴如果a2>0,那么a3>0;假命题.

⑵如果三角形是锐角三角形,那么有一个角是锐角;真命题.

⑶如果两个三角形的对应角相等,那么这两个三角形全等;假命题.

⑷两条相等的线段一定关于某条直线对称;假命题.

6.填空题.

⑴任何一个命题都有 ,但任何一个定理未必都有 .

⑵“两直线平行,内错角相等.”的逆定理是 .

⑶在△ABC中,若a2=b2-c2,则△ABC是 三角形, 是直角;若a2

⑷若在△ABC中,a=m2-n2,b=2mn,c=m2+n2,则△ABC是 三角形.

答案:⑴逆命题,逆定理;⑵内错角相等,两直线平行;⑶直角,∠B,钝角;⑷直角.

⑸小强在操场上向东走80m后,又走了60m,再走100m回到原地.小强在操场上向东走了80m后,又走60m的方向是 .

答案:向正南或正北.

7.若三角形的三边是 ⑴1、、2; ⑵ ; ⑶32,42,52 ⑷9,40,41; ⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有( )

A.2个 B.3个     C.4个      D.5个

答案:B

8.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是( )

A.等腰三角形;  B.直角三角形;  C.等腰三角形或直角三角形;  D.等腰直角三角形.

答案:C

9.如图,在操场上竖直立着一根长为 2米的测影竿,早晨测得它的影长为 4米,中午测得它的影长为 1米,则A、B、C三点能否构成直角三角形?为什么?

答案:能,因为BC2=BD2+CD2=20,AC2=AD2+CD2=5,AB2=25,所以BC2+AC2=AB2

10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?

答案:由△ABC是直角三角形,可知∠CAB+∠CBA=90°,所以有∠CAB=40°,航向为北偏东50°.

以上就是一些关于勾股定理逆定理练习题,相信通过这些练习题的训练,我们大家能够对于勾股定理这个定理能够有了一个更加深刻的认识,对于这个定理的掌握也达到了一个很好的熟练掌握程度,希望我们大家在以后的学习中,也要注意对我们学习过的定理进行举一反三的应用,以达到熟练掌握的程度。

相关推荐
热点资讯
热门话题